Monday, 31 March 2014

THREE PHASE A.C.CIRCUITS
Expression for power in a 3 phase delta connected load
 
 Power  = Power in R phase + Power in Y phase + Power in B Phase
            =VRY .IR'Y' cos Φ + VYB IY'B' cos Φ + VBR IB'R' cos Φ
But
             VRY = VYB = VBR = Vph as line voltage = phase voltage in case of delta
             IR'Y' = IY'B' = IB'R' = Iph
             P = Vph.Iph cos Φ  + Vph. Iph. cos Φ + Vph. Iph.cos Φ
P = 3ph.Iph. cos Φ  watts ( in terms of phase quantities )
 Also Vph = VL          Iph = IL/√3 and cos Φ = R/Z
                   IL
P = 3 VL --------- cos Φ
                  √3
P = VL VL cos Φ watts (Power in terms of line quantities)
3 phase reactive power Q
Q = √3 VL IL sin Φ VAR
Three phase apparent power
S =  √3 VL IL     volt amp
Worked Examples:
  1. Three equal impedances each having a resistance of 25Ω and reactance of 40Ω are connected in star to a 400 V, 3-phase, 50 Hz system. Calculate:
    1. The line current
    2. Power factor, and
    3. Power consumed
  2. Solution:
    Resistance per phase,                 Rph  = 25Ω
    Reactance per phase,                  Xph  = 40Ω
    Line voltage,                                 EL   = 400Ω
    To find: 
    Line current
    , IL:
    Power factor, cos θ:
    Power consumed, P
    Impedance per phase,          Zph  = √Rph2  +Xph2
    Therefore                              Zph=
    Phase voltage,                      EL  =   400     volts
                                                -----     -------     =   231 V
                                                 √3       √3
    Phase current,                                 Eph        231
                                                 Iph = ------- = ---------  =   4.9 A (app.)
                                                            Zph      47.17
    Line current,                        IL = Iph  as it is star connected
                                                IL = 4.9 A  (Ans)
    Power factor,                                     Rph          95
                                                cos Φ= ------  =  -------- = 0.53(lag).
                                                              Zph        47.17
    Power consumed,            P= √ 3  ELIL  cos Φ  =  √3 *  400 *  4.9 * 0.53
                                              = 1800 W (app.)
                                      (or P = 3Iph2 Rph =3 * 4.92 * 25 =1800 W)
  3. Three identical coils are connected in a star to a 400V (line voltage) 3-phase A.C supply and each coil takes 300W. If the power factor is 0.8(lagging). Calculate:
    1. The line current
    2. Impedance and
    3. Resistance and inductance of each coil
    Solution. Line voltage,     EL= 400 V
    Power taken by each coil, Pph = 300W
    Power factor,                 cos Φ= 0.8 (lagging)
     IL  ; Z ; Rph ; Lph :
    Phase voltage,                      EL       400
                                      Eph = ------ = ------  V
                                                 √3       √3
    Also                            Pph  = E ph Iph   cos Φ
                                                 400
                                      300 = ------ *  Iph * 0.8
                                                  √3
                                                  300* √3
                                      Iph = --------------- = 1.62 A
                                                  400*0.8
    Line current,               IL = phase current, Iph  as it is star connected
                                       IL = 1.62 A
                                      Eph=     400  = 230.94 V
                                                 -------
                                                   √3    
    Coil impedance,            Eph      230.94
                              Zph= ------- = ----------   =   142.5 Ω
                                         Iph        1.62
                                       ZC= 142.5 Ω. (Ans)
                                       Rph= Zphcos Φ = 142.5 * 0.8 = 114 Ω
    Coil reactance,           Xph= Zphsin Φ = 142.5 * 0.6 = 85.5 Ω
    But,                            Xph= 2 π f Lph
                                                Xph          85.5
                                      Lph = -----  =  ------------   = 0.272H
                                                2πf         2π * 50
    hence,                        Rph  =  114 Ω.  (Ans)
                                      Lph   = 0.272 H.   (Ans)
  4. A star- connected, 6000V, 3-phase alternator is supplying 4000kW at a power factor of 0.8. Calculate the active and reactive components of current in each phase.
  5. Solution.  Line voltage,                  EL  = 6000 V
                    Power supplied,                p = 4000kW
                    Power factor,              cos Φ= 0.8
    Active and reactive components of current:
    We know that ,                     P =  √3  EL IL   cos Φ
                                 4000*1000 = √3  * 6000 * IL   * 0.8
                                                          4000 * 1000
                                                 IL= --------------------- = 481A
                                                         √3 * 6000 *0.8
                                                     Iph= IL= 481
    Active component                  = Iphcos Φ = 481 * 0.8 = 384.8 A
    Reactive component              = Iphsin Φ  = 481*0.6 = 288.6 A
  6. A balanced 3- phase star connected load of 100 kW takes an leading current of 80 A, when connected across a 3-phase, 1100 V, 50 Hz supply .Find the circuit constant of the load per phase.Solution. Given: P = 100 kW; Iph(=IL) = 80; EL = 1100 V; f = 50 Hz
    Circuit constants of the load per phase, R, C:
    As the – 3 θ load is balanced and star connected, line or phase current
                                                        P                                100 * 103
                        IL= ( Iph) = --------------------- =   --------------------------------
                                               103 EL cos Φ                  √3* 1100 * cos θ
                                               100 * 103
    or,                 cos Φ  =   --------------------- =   0.656
                                          √3 * 1100* 80
                                        Eph        (1100/√3)
                                 Z = -------- = ---------------- = 7.94 Ω
                                        Iph               80
                                 R = Z cos Φ  7.94 * 0.656 = 5.2 Ω (Ans)
                                            1
    Now                    XC = --------- as the current given is leading current
                                        2 π f C
                                            1
                                 C = -----------
                                        2 π f XC 
    But                      XC = Z sin Φ = 7.94 * 0.755 * 5.99 Ω
                                                    1
                                 C = ---------------------- F
                                         2π * 50 * 5.99
                                                 106
                                    = --------------------- μF = 531.4 μF. (Ans)
                                         2π * 50 * 5.99